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Figure 2: Overview of the proposed LTrajDiff Model

trajectories and sensors' signals?
Layout Sequence Trajectory Prediction.
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* Random Mask Strategy(RMS)

» Simulates masks for obstructed and out-of-sight scenarios.

= Utilizes a stochastic function M_i*t_q:t p) with a random variable
r (sampled from U(0,1)) to create masks.
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** Motivation
Real-world situations often involve obstructed cameras, missed objects, or <+ Siamese Mask Encoding Module
objects that are out of sight due to environmental factors, resulting in Comprises two key elements:

incomplete or noisy trajectories.

Temporal Alignment Module(TAM)
Aligns mobile and visual modalities, extracting temporal information.
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Figure 1: Real-World Scenario with Obstructed Cameras and Missing Objects

* Existing Methods and Drawbacks Results
= Computer vision, accurate but have a limited observation range and suffer Dataset 3D [30] Vi-Fi [18]
from obstruction problems. ST - o Metrics MSE-T| | MSE'T | | IoU-D
= Mobil f d 't suffer f t-of-sight | but | : LSTM [33] 452.14 432.33 0.04
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* |mportant information, such as object size and other detailed information R Table 2 Result H3D and Vi-Fi
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Figure 3: Visualization Results Mobile + Visual Modality | 56.13 0.69

v" A novel task: Combining visual and mobile modalities to enhance sequence

observation range and prediction accuracy, effectively addressing their Model Phase1] | Phasen1 | |  lable 3: Ablation Study of Modality
individual limitations. LSTM [33] 110.11 116.24
v’ Layout sequence: Extending traditional trajectory prediction into layout ViTag (6] 11930 110.52 Model Variant MSE-T | [ ToU-D |
oo : _ _ _ _ _ Transformer [9] 28.28 28.27 /o RMS (4.1) 307 41 0.08
sequence prediction to provide detailed object information, such as bounding UNet [32] 3.49 5 59 W";’OOMFM W) Taes | oas
boxes and depth. HIVT [37] - 17.51 w/o TAM (4.2.1) 205 03 0.15
v The LTrajDiff Model: Accurately predicting trajectory sequences from noisy MID [11] : 1352 w/o LEM (4.2.2) 64.07 | 0.8
C e : . . LTrajDiff(Ours) - 4.48 Complete model 56.13 0.69
and obstructed layout sequences, significantly improving prediction
accuracy. Table 1: Results on Extremely Table 4: Ablation Study of Model
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Project Page: https://hai-chao-zhang.github.io/LTrajDiff/




